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Abstract
This paper presents a robotic system for autonomously scanning wall surfaces by means of inductive, capacitive and AC
measurements in order to gather information about flush-mounted power lines, water pipes and cavities. From these data
the system generates a 3D map with in-wall information. Algorithms for surface scanning are described enabling robust
methods for data acquisition and fusion of the scanning and localization data. The paper describes and evaluates two
methods for reconstructing surface and in-wall information: The first one uses occupancy grid mapping along with the
elaborated sensing model of the wall scanner, the second is a combination of scanning and mapping. The created 3D map
is made available to a second system that projects the map onto the wall surface, removing distortions induced by the lack
of a perpendicular projection. That system provides craftsmen the additional information to prevent hitting wires or water
pipes when performing drilling tasks. The utilized robots make use of the robot software framework ROS.

Keywords: Autonomous wall scanning, in-wall information, flush-mounted piping and electric installations, sensor fusion
and localization to a 3D-map, projection of in-wall information, SLAM, occupancy grid mapping, ROS

1 Introduction

Problems that arise in drilling tasks are often caused by
hitting flush-mounted water pipes, power lines or cavities
(e.g. in lightweight walls), which may lead to severe dam-
ages and costs. Although this in-wall information is of high
importance for craftsmen, it is likely to be poorly docu-
mented, particularly for existing buildings. In order to as-
sist craftsmen when drilling, we are developing an exper-
imental robotic system consisting of two robot platforms.
The first one autonomously generates a 3D map of the in-
wall information (power lines, pipes etc.). For that pur-
pose a wall scanner has been mounted on the robot and
linear drives position the device appropriately on the wall
in order to gather the required data. The second platform
subsequently projects this in-wall information on the wall
surface in order to assist the craftsmen. For that purpose a
beamer is pivotally mounted on the robot.
Augmentation of information is already in use in other do-
mains like military, medical science, or production. For
example, relevant information is displayed during the re-
pair of military vehicles in a head-up display [5], pre-
operatively acquired data is projected in minimal invasive
intervention to help surgeons [7], or in manual welding
processes the welding gun’s position is suggested and er-
rors are displayed [1]. The presented research aims to help
establishing the augmentation in the domain of craftsmen
by projecting in-wall information that is autonomously
gathered in advance. Such an application is not known to

exist yet. The paper is organized as follows: Section 2
gives a short description of the mobile projection system
with the capability of undistorted projection of the map
onto the wall surface. The scanning system is presented
in detail in section 3. In addition, section 3 will discuss the
sensor model of our wall scanner. Further a procedure for
autonomously gathering in-wall information is presented.
Section 4 then sketches how the fusion of robot sensor data
is done with the wall scanner data in order to derive a 3D
map. Two different approaches for generating the desired
map of in-wall information are considered. Experimental
results are presented in section 5. The paper ends with a
summary and concluding remarks in section 6. Addition-
ally, the next steps of the study are shortly sketched.

2 The projection system
The projection demonstrator is shown in Figure 1 which
is capable of automatically correcting distortions arising
from non-orthogonal projections [3]. The mobile projec-
tion system uses 4 steerable drive wheels to provide an
omni-directional platform. The platform is equipped with
2 laser scanners for localization of the robot, a pivotally
mounted beamer for projection (3 degrees of freedom), and
a stereo camera system, which together with the beamer is
used to measure the robot heading towards walls.
Figure 2 shows the basic concept of the augmentation sys-
tem. The main block of the augmentation is computer vi-
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sion & image creation. It considers the 3D-map to be given
and generates the image to be projected. For that purpose
the original image is ’pre-warped’, making use of the robot
pose and the orientation of the robot towards the wall.

Figure 1: Left: Demonstrator for projection of in-wall
information (mobile platform with traversable projector).
Right: No distortion despite oblique projection
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Figure 2: Basic concept for augmentation

The estimation of the robot’s orientation towards the wall
is illustrated in Figure 3. A square pattern is projected on
the wall and computer vision algorithms are used to de-
tect corners within this pattern. Stereo triangulation then
delivers the respective coordinates in the camera frame.

Figure 3: Estimation of the robot’s orientation

Experiments with this system have shown, that under nor-
mal conditions (projector distance to wall < 4m) a suffi-
cient accuracy can be achieved. However, acceptable re-
sults on the accuracy of the detected corners in the pro-
jected square pattern require expensive and optically well
adjusted cameras [3].

3 The scanning system

The scanning system is based on the same omni-directional
platform as the projection system described in section 2.

Figure 4 shows a CAD sketch and a picture of the scan-
ning system, equipped with 2 computer systems: One is
used for controlling the platform itself and a second for
gathering the data from the wall scanning device, fusing
the scanning and localization data, and creating the map.
Two laser scanners are mounted at the base of the robot for
localization and for navigating along walls. They are also
used for preventing collisions (safety). Two linear drives
mounted on the robot allow the scanning device to be po-
sitioned on the wall (xy-position). A passive spring-based
mounting assembly ensures the scanner is positioned at a
proper contact to the wall. An off-the-shelf wall scanner
(GMS120, Bosch) is used. The device provides three sen-
sors: Inductive, capacitive and alternating current sensing.
In order to derive a measurement model the scanner was
mounted on a position controlled sledge and moved along a
prepared wooden plate. Behind the plate two copper pipes
and a plugged-in extension cord were mounted at approxi-
mately 0.80 m, 1.40 m, and 0.35 m, respectively.

Figure 4: Mobile scanning system

The primary function of the capacity sensor is to detect
wood beams whereas our task is to detect power lines and
metal. Therefore, the capacitive sensor is not used during
autonomous wall scans.
The following two diagrams show the sensor signal data of
the inductive and AC sensors plotted over the sensor posi-
tion. The sensor data (symbol α) is scaled for the display
(hmi) of the scanning device by which the absolute values
loose their physical meaning. The left edge of the plate is
at position 0 m. In every plot three different measurements
are plotted to give an impression of the variability of the
sensors.
Figure 5 shows three different runs of the inductive sensor
along the test wall. These measurements are highly repro-
ducible. The second and third peaks are caused by the two
pipes, while the first peak is caused by a mounting plate.
The first pipe at approx. 0.8 m is mounted with an angle of
45◦ resulting in a slightly lower and wider peak in the sen-
sor signal compared to the peak resulting from a vertically
mounted pipe at approx. 1.4 m. The scan experiments have
shown that every metallic material close to the scanner can
falsify the measurements. It is therefore important not to
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use metal for the holding of the scanning device in order
to ensure correct behaviour of the inductive sensor. Fur-
ther experiments have shown that metal within 15 cm of
the device should be avoided.

(vertical)
pipe

mounting plate
influence of

pipe (45◦)

1.0

1.0

In
d.

se
ns

or
si

gn
al
α
h
m

i

Sensor position in m

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 1.61.41.20.8

Figure 5: Inductive sensor data; different colors indicate
different runs

Figure 6 finally depicts the values of the alternating cur-
rent sensor. The reproducibility of these scans is even bet-
ter compared to the inductive sensor. The power line at
approx. 0.35 m produces a sharp peak which is exactly at
the same position for all measurements. However, metal
close to the power line seems to produce a constant sen-
sor value at medium level, due to inductive coupling. This
coupling can also be seen at the positions of the pipes (ap-
prox. at 0.8 m and 1.4 m) where the AC sensor gives a low
signal due to the coupling from the power line. A slight de-
viation from inductive to AC measurement is due to some
hysteresis of the inductive sensor, depending whether the
pipe is approached from the left or the right.
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Figure 6: Alternating current sensor data (detection of a
power line). Plots show high reproducibility.

Both sensors show appropriate results suitable for a pipe
or power line detection with sufficient evidence. However,
the inductive sensor is easily disturbed by metal near the
scanning device. This has to be taken into consideration
for the construction used for positioning the device. Addi-
tionally, the mutual sensitivity (inductive coupling of pipes
visible in the AC measurements and copper wire of power

lines visible in the inductive measurement) can be used to
improve the sensor models. This fact can also be exploited
by the later sensor data fusion and hence increase evidence
and plausibility. So far we have, however, not considered
these facts.

4 Mapping and Visualization

Basically two approaches were investigated throughout our
experiments. The first approach makes use of an existing
3D model and applies occupancy grid mapping to associate
the wall scanner data with the 3D model.
The second approach is to scan the wall by means of
(rectangular) frames with a width of approx. 0.35 m and
to stitch together these frames to the overall 3D map by
means of an optimization problem.

4.1 Occupancy grid map approach

The goal of the system is to create a 3D in-wall informa-
tion map that can be used by a craftsman. In order to create
a consistent representation of the environment, sensor data
from the wall scanner needs to be fused with 3D data, for
example delivered from a stereo camera system or another
3D sensor. In this approach the Kinect is used.
The result is a surface representation of the wall that in-
cludes information about in-wall features. Surface repre-
sentations are well suited for fast rendering, efficient data
reduction, and semantic labeling. For these reasons, we use
triangle meshes as our geometric and visual representation
for 3D in-wall maps. In our system we triangulate the raw
point cloud by exploiting the regular structure of the mea-
surements. The scanning process already lays out the 3D
input points in a grid like structure referred to as range im-
age. A 3D mesh is created by connecting a point in the
range image with two of its neighbors in each angular di-
rection which yields a triangulation in the 2D range image
space. Since we know the corresponding 3D position in
space for each range image point, the 2D triangulation can
be easily transferred into a 3D mesh. Figure 7 depicts an
example of a room corner captured by the scanning system
and reconstructed as a surface mesh.

Figure 7: Left: Room corner. Middle: 3D Point Cloud.
Right: Reconstructed Surface Mesh

The next step is to create a map of in-wall features that can
be fused with the surface mesh. The input data for creating
the map are the sensor signals from the wall scanner. An
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exemplary plot of a horizontal wall surface showing power
line in-wall features is shown in Figure 8.

Figure 8: 2D scan of a wall fragment using the AC sensor.
A horizontal power line is detected at y ≈ 1.25m as shown
by the peaks in the scan

In this system we use a 2D surface map which can be ap-
plied to the 3D mesh as a texture. The basic idea for the
in-wall mapping algorithm is to maintain an evenly spaced
2D grid structure g, where each cell gi represents a ran-
dom variable. Each random variable is binary and signals
if an in-wall object is detected or not. This occupancy grid
mapping approach [8] calculates the posterior over maps
p(g|α, x), where α is the set of all measurements taken by
the wall scanner and x are positions of the sensor on the
wall. Due to the log odds representation new sensor data
can be merged into the grid map by adding up the values in
each individual grid cell. The occupancy grid map update
requires defining an inverse sensor model that calculates
the amount of evidence caused by a single measurement.
In our case, a simple inverse sensor model can be defined.
We use a sensor model that increases the evidence for grid
cells inside a measurement cone in case the measured value
exceeds a defined threshold. This way grid cells accumu-
late more and more evidence with each measurement. In
case the measured value is below the threshold the evi-
dence for the cell not containing an in-wall object is ac-
centuated.

Figure 9: Exemplary result of occupancy grid map ap-
proach. Please refer to figure 14 for the true in-wall setup.

Figure 9 shows the result of this approach whereby the 3D
map was captured by a Kinect device mounted on the robot
together with the related ROS package [4]. The position of
the wall scanner was calculated from the pose estimation of
the mobile platform and the forward kinematics describing
the wall scanner positioning device.

4.2 Combined scanning and 3D mapping
The method described in section 4.1 relies on an accurate
map and particularly good localization of the wall scanner.
In the following we will present another approach which
breaks down the 3D mapping into some subtasks.
Figure 10 illustrates how the robot is positioned and scan-
ning is accomplished. Basically, the laser scanners of the
platform are used for the following tasks, namely the
• global localization (in the 2D map of the room),
• for relative localization with respect to the side walls

giving information on the x-position with respect to
the scanned wall, and
• for aligning the robot towards this wall.

Figure 10: Top view on robot: Positioning and alignment
of robot is based on laser scanners

Figure 11 shows the flow chart of the mapping process,
i.e. association of the measurements within the map. Sub-
sequently, the steps therein are described.

visualization / augmentation

frame alignment (rotation, translation, ’loop closing’)

frame proc. (outlier removal, frame representation)

wall scanner data post processing

scan of rectangular frames

Figure 11: Flow chart of mapping procedure

Collecting rectangular scan frames

The position at which the scan data is acquired is derived
from the robot localization solution and the forward kine-
matics of the wall scanner positioning device. Since the
mobile system is in rest during a frame scan, there is a high
consistency within the frame. However, uncertainties from
one frame to the next are not negligible as can be seen in
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Figure 12 (uncertainties in x, y, φ). In addition, the points
close to the ground are distorted as some wires of the xy-
positioning system are shadowing the laser scanners.

Figure 12: Point cloud of frames in 3D and top view with
extracted planes of some frames

Therefore, first the plane can be extracted and outlier can
be removed from the data by means of RANSAC [2] or
similar fitting algorithms. Thereafter, the centre of gravity
and orientation of the frame is calculated whereas the as-
sociated covariances is derived from the average values of
the localization / navigation stack after removal of the out-
liers. Figure 13 shows the top view of the representation
of all scanned frames in a room.
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Figure 13: Frame representation by its pose Xi

Frame alignment

Now the frames are aligned (stitched together). Basically,
well known technologies from the ’loop-closing problem’
are utilized (please refer for instance to [6]).
The frame positions are represented by a pose sequence
Xi. So called constraints introduce relationships between
poses. One should bear in mind that constraints do not
need to be fulfilled exactly, but in the probabilistic sense,
i.e. due to the uncertainties the constraints are fulfilled with
some probability but with no guarantee. The respective
uncertainties are considered as to be normally distributed
(Gaussian). Typically constraints are derived from follow-
ing observations:

• odometry / localization between poses,
• sensing of identical features from two poses, or
• prior knowledge

Comparing constraints with observations leads to so called
residuals. For the i-th residuum ri one may write

ri = zi − f i(x)

whereas zi represents the observation and f i the con-
straint. Each constraint is associated with its own uncer-
tainty Σi resp. its confidence Σ−1

i .
A set of poses that is best explained by all constraints can
be calculated by minimizing the following sum of square
errors (Mahalanobis-distances)

ξ2 =
∑
i

ξ2i =
∑
i

rTi Σ
−1
i ri

As constraints we use the localization solution delivered
by the navigation stack and the relative position measure-
ments of the laser scanner when the robot aligns to the wall.
In our fairly ’collaborative’ setup with rather bounded er-
rors we can treat the problem linearly and solve it effi-
ciently in matrix form. For that purpose we stack the vector
of unknowns x and the confidence matrix Σ−1

S and may re-
formulate our residual vector r = z−Jx with the stacked
Jacobian J . Our loss function becomes

ξ2 =
∑
i

ξ2i = (z − Jx)TΣ−1
S (z − Jx)

and minimization leads to the solution

x = (JTΣ−1
S J)−1JTΣ−1

S z

Wallscanner data post processing

Finally, the wall scanner data can be post processed by
computer vision methods in order to smooth transitions
and to sharpen the results if necessary. In our experiments
so far there was no need for further processing.

5 Experimental results

Figure 14: Picture of the in-wall information prior to plas-
ter work

Figure 14 shows as a reference the picture of the experi-
mental wall prior to plaster work. As can be seen it consists
of some horizontal, vertical and diagonal power cables as
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well as of copper pipes with changing orientations. Fig-
ure 15 illustrates the result after accomplishing all men-
tioned steps in section 4.2. The high performance of the
used device is indicated by the small peaks which are due
to screws and nails from the wooden structure and the ca-
ble clamps, respectively.

Figure 15: Results after frame alignment (ind. sensor)

Finally, Figure 16 overlays the real picture with the result
of the in-wall 3D map. The scan of the shown area takes
approx. 5.5 hours to complete with our yet not optimized
scanning process.

Figure 16: Picture of the wall with overlaid inductive scan
results (highlighted by a frame)

6 Summary and conclusions
This work has shown a new application for a robotic sys-
tem, namely the autonomous scanning of wall surfaces in
order to generate a 3D map with in-wall information like
flush-mounted power lines and water pipes. Two methods
to generate such a map have been investigated: The one
uses occupancy grid mapping, and the other a combination
of scanning and mapping. Results are promising from both
approaches; hence, both we will further investigate and op-
timize. The main differences are as follows:

Grid Mapping
+ online visualization directly within wall picture
+ allows different inverse sensor models
+ robust against measurement noise

− accuracy highly depends on grid quality (robot’s lo-
calization and camera position)

Scanning and Mapping (with loop closing)
+ more accurate, depending on localization
+ no tuning of parameters
+ visualization and data storage in map coordinates
− requires preprocessing of data→ higher effort
− no online visualization

The scanning device proved very accurate - even screws
and nails can be detected and localized accurately. Such
objects may in the future be used as additional features to
increase map accuracy.
Due to cross-sensitivity of the measurement principle - e.g.
the inductive sensor can as well detect power lines (which
contain copper) - several maps with alignable information
exist. In the future we will fuse these data appropriately.
Additionally, model based approaches for the scanning it-
self will be developed in order to ensure time efficiency of
the process.
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