
Design of the planer of Team AnnieWAY’s autonomous vehicle
used in the DARPA Urban Challenge 2007

Tobias Gindele, Daniel Jagszent, Benjamin Pitzer and Rüdiger Dillmann

Abstract— This paper reports on the behaviour decision
and execution unit of AnnieWAY, an autonomous vehicle that
is capable of driving through urban scenarios and that has
successfully entered the finals of the DARPA Urban Challenge
2007 competition. Starting with a short description of the car
and its major hardware components, we outline the underlying
software structure and focus on the design of the behavior
decision module. The selection of maneuvers necessary to
accomplish the mission is conducted online via a concurrent
hierarchical state machine that specifically ascertains behavior
in accordance with California traffic rules. The states and
transitions used to model a adequate behaviour are described.
We conclude with a report of the results achieved during the
competition.

I. INTRODUCTION

If you take a look at the tasks of a human driver, you will
notice how complex they are. Starting with the capability to
seamlessly perceive the vehicle environment, the driver must
be able to analyze the situation, assess developments and to
choose and execute an appropriate behavior in a controlled
way. To automate the process of driving you have to find
and realize solutions for all these problems. For the sake
of vehicular comfort, efficiency, and safety, research groups
all over the world have worked on building autonomous
technical systems that resemble such capability (cf. e.g. [1],
[2], [3], [4], [5]).

The DARPA Urban Challenge 2007 has been a compe-
tition introduced to expedite mainly US research on auto-
nomous vehicles. Its finals took place on Nov. 3rd, 2007
in Victorville, CA, USA. As in its predecessors, the Grand
Challenges 2004 and 2005, the vehicles had to conduct
missions fully autonomously and unmanned without any
intervention of or interaction with the teams. In contrast
to the earlier competitions, the Urban Challenge required
operation in ’urban’ traffic, i.e. in the presence of other
vehicles operated either autonomously themselves or by the
organizer. The major challenge imposed was collision-free
driving in traffic in compliance with traffic rules (e.g. right
of way at intersections) while completing the given missions
that included overtaking maneuvers, U-turns, parking, and
merging into regular flow of traffic. Finally, recovery stra-
tegies had to be demonstrated in deadlock situations or in
traffic congestion that cannot solely be handled with traffic
rules.

T. Gindele, D. Jagszent and R. Dillmann are with Insitute for Computer
Science and Engineering, University of Karlsruhe, D-76128 Karlsruhe,
Germany.
{gindele|jagszent|dillmann}@ira.uka.de,
benjamin.pitzer@us.bosch.com

II. SYSTEM OVERVIEW

The basis of the AnnieWAY automobile is a 2006 VW
Passat Variant B4 (figure 1). The Passat has been selected
for its ability to be easily updated for drive-by-wire use by
the manufacturer.

Fig. 1. AnnieWAY’s autonomous vehicle

AnnieWAY relies on an off-the-shelf AMD dual-core
Opteron multiprocessor PC main computer whose computing
power is comparable to a small cluster, yet offers low
latencies and high bandwidth for interprocess communica-
tion. All sensors connect directly to the main computer
which offers enough processing capacity to run almost all
software components. The main computer is augmented by
a dSpace AutoBox that operates as electronic control unit
(ECU) for low-level control algorithms. It directly drives the
vehicles actuators. Both computer systems communicate over
a 1 Gbit/s Ethernet network. The drive by wire system as
well as the car odometry are interfaced via the Controller
Area Network (CAN) bus. The DGPS/INS system allows
for precise localization and connects to the main computer
and to the low-level ECU (AutoBox). The chosen hardware
architecture is supported by a real-time-capable software ar-
chitecture. The main sensor is a Velodyne HDL-64E rotating
laser scanner that produces highly accurate 3D scans of the
surounding environment with 10 frames per second.

A. Software architecture

The sofware architecture consists mainly of four modules.
Like shown in figure 2 the first one is the perception module.
It analyses all the sensor data and classifies all seen objects
and maps the environment. This data is send to the planner
where it is integrated in a global high-level scene description.
Based on this description the planer analyses the current
situation and choses an appropriate behavior. This behavior

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2008 IEEE Intelligent Vehicles Symposium.
Received January 14, 2008.

is then executed and generates a trajetory which is passed to
the next module, the low-level-collision-avoidance. Because
the trajectory is generated on abstract information it has to
be checked for drivability by taking into account the overall
environment. If it is probable that the car will hit an obstacle
than the collision avoidance plans an alternative trajectory.
At the last stage the control module drives the car according
to the trajectory.

Perception Planer
Low Level
Collision

Avoidance
Control

Fig. 2. main modules and information flow

III. REPRESENTATION OF THE ENVIRONMENT

The autonomous vehicle uses an internal world model of
its environment to plan its actions. This model is permanently
updated and extended as soon as new information becomes
available. It consists mainly of a virtual map which contains
information about the whole drivable road network. In ad-
dition it holds all the knowledge about dynamic and static
objects in a close range like other traffic participants and
road blockades.

The map is represented as a directed graph, whose ed-
ges describe lane segments. Figure 3 shows a comparison
between a real road network and the internal representation.
The nodes represent points in the real world connected over
global coordinates. The nodes form by definition the start
and end points of segments and lie in the center of the lanes.
Edges feature additional attributes defining e.g. the length,
width or type of the lane edge boundaries. Nodes could also
have additional attributes to display a stop-line or checkpoint.

Fig. 3. real road network and internal representation

Edges could have additional annotations to mark special
kinds of lane-segments. These are:

• Virtual
• Zone
• LaneChange
• KTurn

• Blocked
• PriorityLane
Virtual lanes designate lanes in intersection areas for

which no edge boundaries exist. The Zone attribute marks
abstract connections in unstructured areas. The KTurn attri-
bute marks areas where a k-turn is possible and analogous
LaneChange where lane changes are possible.

Edges have links to adjacent lanes marking their type of
relationship at the same time. Thereby it is easy to look up if
a lane has left or right neighboring lanes, oncoming lanes or
crossing lanes and which these are. This allows comfortable
traversing of the graph at the scene analysis.

The missions that the vehicle has to accomplish consists
of a list of checkpoints that has to be passed in the given
order. The routes between the checkpoints are not specified
hence the mission planning component searches the optimal
route in the road network with an A* algorithm [6]. The
optimum criterion is defined as shortest travel time. Edges
are thereby weighted by their expected travel time. The result
is stated as sequence of edges that are annotated with high
level maneuvers, like a k-turn or a left turn, etc..

IV. DESIGN OF THE STATE MACHINE

The basic idea of a hierarchical state machine is to design
and group the states in the way that each substate is a
specialization of its parent state so that only corresponding
differences have to be modeled similar to inheritance princi-
ple of the object oriented programming paradigm. Thereby
the functional redundancy of the states is reduced as well as
the amount of transitions needed hence it is easier to create
and extend complex state machines.

In the state machine of AnnieWAY with exception of some
special states, every state represents a behavior. A decision
that had an leading impact on the design was to operate the
state machine with a fixed cycle time. This makes it easy
to make propositions about the runtime and to guarantee
real time execution. Because state machines operate event
based we created a special event called EvProcess that is
created with a fixed frequency. Each state implements a
reaction on this event. In this routine all relevant aspects
of the current scene concerning the actual behavior and the
possible transitions are analyzed and a transition to a new
state is executed if required.

The state machine was implemented with the C++ pro-
gramming language and the boost state chart library [7].

A. Overview of the state machine

The state machine is based on three basic modes of
operation. These are Pause, Active and Error. The vehicle
starts in state Pause and goes in state Active by sending
a start signal. In Pause the breaks are activated whereas
in Active the car acts free to accomplish its mission. It is
possible to interrupt the actions of the vehicle at any time by
sending a pause signal thereby setting it in state Pause. By
doing this the current state of Active and all its substates are
saved and the vehicle instantly starts to break til it stands. If

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2008 IEEE Intelligent Vehicles Symposium.
Received January 14, 2008.

WaitForActivation

Active

H

goal_ahead

on_error

pause on_error

Error

intersection_blocked

blockade_head

GoalIntersection

ZoneDrive
back_on_track zone_passed

GlobalRecover

Replan

goal_ahead

goal_ahead

zone_ahead

intersection_passed

pause
Pause

activate
on_error

intersection_ahead

Fig. 4. UML Diagram of the main states

the car gets reactivated later the saved state is restored and
the mission directly resumed. If the car gets moved in Pause
which is detected by the localization module the saved state
is discarded and the state machine reinitialized. If an error
occurs at any time that can not be handled by the current
state the state Error gets activated which stops the car in a
controlled way and prints out the error message.

The automat is designed in a way that divides movement
in three different types which are handled differently. The
normal driving on streets is handled by state Drive. In
intersection areas Intersection is active and for all areas with
unstructured environments the state Zone is used. This state
allows the car to navigate in areas beside the road network
where no lanes are marked e.g. in parking lots. As soon as
the autonomous vehicle reaches its goal it remains in state
Goal.

Sometimes the car gets in situations where no progress is
made, that means that no improvement is measurable by the
progress criterion defined in the current state for a longer
time. This can happen for two reasons. First the abilities of
the state machine are to limited to handle the current situation
or second the other cars are not acting in a correct way for
example if they simply do not drive. To even accomplish the
mission in such cases the state GlobalRecover is used but
only if all other more specific fallback recover mechanisms
have failed. In the global recover mode the module for free
navigation is used to plan a path from the current place to the
next checkpoint. Thereby no traffic rules and only the most
outer lane boundaries are considered. Dynamic obstacles are
evaded and static obstacles are circumnavigated. As soon as
the checkpoint is reached the state machine changes back to
Drive. The global recovery state is a dangerous behavior and
not useable in its current form for every day road traffic but
made sense in the context of the urban challenge because it
was more important not to get stuck than breaking a traffic
rule.

B. Drive state

The state Drive (see Fig. 5) represents driving on a lane.
It includes all relevant maneuvers. The start state DriveStart
analyzes the current situation an branches to the correspon-
ding sub-state. DriveOnLane is active during normal driving
on a road. LaneChange is active on any kind of lane change
to ensure a safe merging with moving traffic. DriveKTurn
coordinates a K-turn. DriveStop handles the special case of a
stop-line without an intersection. DriveRecover tries to bring
AnnieWAY into a better position if it got stuck.

allowed_to_drive

no_progress

stopline_ahead

kturn_finished

Drive

kturn_necessary

obstacle_ahead

lane_free

stopline_ahead

DriveStop

lane_changed
DriveStart

no_progress

DriveKTurn

LaneChange

DriveRecover

DriveOnLane

Fig. 5. UML diagram of state Drive

1) DriveOnLane state: This state is used for regular dri-
ving on roads with no special characteristics. The generated
path of the state DriveOnLane only depends on the current
lane and possible vehicles in front. Thereby the maximal
allowed speed and the speed of the vehicle ahead is taken
into account.

2) LaneChange state: The state LaneChange is respon-
sible for all kinds of lane changes. Overhauling is thereby
regarded as a combination of two lane changes. Overall three
different types are handled, lane change to the left neighbo-
ring lane, to the right and overhauling on the oncoming lane.
Figure 6 displays the state diagram with the different states.

obstacle_passed

dangerous_object_appeared

DriveOnOppositeLane

dangerous_object_appeared

ChangeBackFromOppositeLaneChangeToLeftOppositeLane

dangerous_object_appeared

LaneChangeRecover

safe_state_reached

AbortLaneChange

recover_path_planned

dangerous_object_appeared

dangerous_object_appeared

[left_opposite_lane_free]

LaneChangePrepare

[left_lane_free]

[right_lane_free]change_point_reached

left_opposite_lane_reached

ChangeToLeftLane

ChangeToRightLane

LaneChange

Fig. 6. UML diagram of state LaneChange

A lane change can have different causes:
• The mission planning dictates a lane change. This is

often the case before intersections when the lanes get
separated in straight and turning lanes.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2008 IEEE Intelligent Vehicles Symposium.
Received January 14, 2008.

• The current lane is blocked by a obstacle e.g. by a
standing vehicle or a road blockage.

• The vehicle ahead drives significantly slower than the
own desired velocity.

When a lane change is initiated the state LaneChangePre-
pare is activated. This state is responsible for planning the
details of the lane change and to start the execution at the
right time. If the direction of the lane change is not dictated
by the mission it is analyzed which lanes are applicable.
Therefor all adjacent lanes are examined and checked if they
are adjacent long enough to finish the change process. This
is most relevant for an overhaul operation on the oncoming
lane. Additionally it is asserted that the corresponding lane
does not cross an intersection during the change and is not
blocked. If a left neighboring lane fulfills all these conditions
it is preferred over a right one. As a last option a left
oncoming lane for an overhaul operation is considered. If no
lane is applicable for a lane change and it is mandatory the
state Replan is activated to find an alternative route otherwise
Drive is reactivated.

If the lane for the change is chosen the point where the
car starts the lane change called change point is calculated
based on the distance to the obstacle ahead. Starting at this
point a path is planned in shape of a ramp to other lane
and the end point is calculated. For the overhaul operation
the corresponding points for the change back are estimated
analogous. Using this points the area of lane change is
defined and estimations of the movement of all relevant
vehicles are calculated to test if they conflict with the own
car during the change process. Because the autonomous
vehicle is still in the approaching phase it stops at the
change point if one of the test fails. If the reason for the
lane change disappears in this phase, e.g. that the blocking
vehicle ahead starts to drive again, the lane change is aborted
and vehicle gets back to Drive. As soon as the car reaches
the change point the state machine does a transition in the
corresponding state ChangeToLeftLane, ChangeToRightLane
or ChangeToLeftOppositeLane.

As soon as the new lane is reached normal driving in
state Drive is continued after an adjustment of the mission
graph. In case of an overhaul operation on the oncoming
lane a maneuver of driving on the opposite line in state
DriveOnOppositeLane and lane change back on the old lane
with ChangeBackFromOppositeLane is executed before.

In all phases of a lane change the situation of the au-
tonomous car and its evolvement is assessed for potential
conflicts. If an acute danger emerges, e.g. a car appears out
of the sight shadow, the state LaneChangeAbort is activated
which responsible for planning a save abortion of the lane
change. Subsequently the state LaneChangeRecover executes
the the abortion and navigates to the planned retreat point.
If for example the autonomous vehicle is starting to change
to the opposite lane and suddenly sees an oncoming car it
stop the operation, changes back to the old lane and retries
to change as soon as the other lane is free again.

3) K-Turn state: U-turns or K-turns were necessary du-
ring the Urban Challenge in following situations:

• Mission planning schedules a K-turn because it is the
best (and possibly only) means to reach a checkpoint.
E.g. planning out of a stub road.

• A K-turn needs to be made spontaneous because An-
nieWAY detected a road blockade.

Only the first situation is handled with the state Dri-
veKTurn. Dynamically necessary K-turns are considered a
special case of the state Replan/GetBackOnTrack.

The path planning for K-Turns is done with the path
planning component of the zone planner. With its help Annie-
WAY can handle non-parallel oncoming lanes and obstacles
between the lanes. The path planner gets parameterized to
only use its circle/tangent/circle heuristic and a B-formed
configuration space. With this parameter the zone planner
generates a path for a three point turn on the oncoming lane.

For a description of the zone planer and its used algorithms
and heuristics see [8].

In the state DriveKTurn AnnieWAY is stopped, the path
start and end points are calculated, the zone planner is
parameterized and executed.

4) DriveStop state: Normally stop points belong to an
intersection and stopping at those points is handled in the
Intersection state. But the data structures allow a stop point
to be placed anywhere in the road network. The DriveStop
state handles those stop points by stopping at them and
unconditionally go on afterwards.

5) DriveRecover state: There is a tranistion from eve-
ry sub-state of Drive to DriveRecover that is executed if
AnnieWAY does not make progress for a certain amount of
time depending on the actual sub-state. E.g. DriveOnLane’s
timeout is small because a clear passage is assumed when
the state machine is in this state. DriveRecover uses the zone
path planning component to get AnnieWAY a certain distance
further in the mission.

C. Replan state

It can easily happen that assumptions that are stated during
the mission planning process turn out to be wrong in reality.
In such cases the autonomous vehicle must be able to replan
so that current circumstances can be considered. This is the
task of the state Replan. The corresponding UML chart is
shown in figure 7.

Replan

GetBackOnTrackReroute

Fig. 7. UML diagram of state Replan

If a road blockage is recognized the corresponding lane
edge is marked as blocked and therefore can not be traversed
during the rerouting process.

The state Reroute searches for a new route to absolve the
mission depending on the current position and orientation of

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2008 IEEE Intelligent Vehicles Symposium.
Received January 14, 2008.

the own car. To find the best edge in the graph to continue
the mission the eges are iterated according to their distance
and direction. The first edge in this order from which an
path exists to the next checkpoint in the mission and that
is not blocked is used as the beginning of the new route.
From there the paths between the checkpoints are planned
with the A* Algorithm as described earlier. After rerouting
the vehicle is navigated to the beginning of the new mission
with the state GetBackOnTrack.

It is checked in every state if the car is off the track
measered by its distance to the planned route. This situation
can emerge if the vehicle missed a lane change or after
rerouting. In this case the GetBackOnTrack aproximates the
best reentry point on the next lane in the mission. The vehicle
uses free navigation to reach this point and continues from
there in the normal driving mode.

D. Intersection state

In proximity of any kind of intersection the state machine
is put into the state Intersection (Fig. 8).

IntersectionApproach is the start state for Intersection. It
remains active until AnnieWAY is close to the intersection
unless another vehicle is detected in front of AnnieWAY .
Then IntersectionQueue is activated and the state machine
remains in it as long as either the vehicle passes the inter-
section, is not detected anymore, or AnnieWAY has reached
the intersection.

If AnnieWAY is in state IntersectionApproach and near the
intersection, the state machine branches on the basis of the
type of the intersection and the current traffic situation:
(a) IntersectionStop if AnnieWAY is on a yield road,
(b) IntersectionPrioDriveInside if it crosses the intersection

on the priority road and no other vehicle on a priority
road has precedence over AnnieWAY.

(c) IntersectionPrioStop if AnnieWAY is on the priority road
but needs to wait for other traffic. (E.g. left turn crossing
the priority road with oncoming traffic)

In case (a) AnnieWAY stops at the stop-line and the state
is switched to IntersectionWait. In this state all vehicles
standing at other stop-lines are registered. According to
the 4-way-stop rule this vehicles have precedence over
AnnieWAY . If these vehicles passed the intersection and the
moving traffic check (MTC, [9]) concludes that AnnieWAY
can safely merge into the moving traffic the state is changed
to IntersectionDriveInside and the intersection is passed.

In case (b) the intersection is passed without further state
changes - except if AnnieWAY is near the intersection entry,
a new vehicle gets detected on the oncoming priority road,
and the MTC identifies a possible collision. In this case a
state transition to IntersectionPrioStop is executed and the
situation is handled like in case (c).

In case (c) IntersectionPrioStop brings AnnieWAY to a full
stop at the line of sight. Afterwards state IntersectionPrioWait
is activated. The state machine stays in this state as long as
there are vehicles with right of way and the MTC identifies
unsafe situations for pulling in. After waiting the active state

is changed to IntersectionPrioDriveInside and the situation
is handled like in case (b).

IntersectionRecover can be reached from every intersec-
tion state. It gets activated when AnnieWAY did not made
progress for a certain amount of time. This state assesses
the current situation and tries to maneuver AnnieWAY to a
better position. If this recovery is unsuccessful the current
lane segment or intersection is annotated as blocked and a
transition to state Replan is issued.

stopline_reached

queue_ahead lane_free

has_right_of_way

has_right_of_way

IntersectionQueue

IntersectionPrioWaitIntersectionRecover
[on_prio_lane &&

 ! right_of_way]

IntersectionPrioDriveInside

IntersectionPrioStop
stopped

intersection_close

IntersectionWait

IntersectionDriveInside

IntersectionStop
[! on_prio_lane]

[! has_right_of_way &&
before_point_of_no_return]

[on_prio_lane &&
has_right_of_way]IntersectionApproach

Intersection

Fig. 8. UML diagram of state Intersection

E. Zone state

The Zone state handles situation when AnnieWAY has
to cope with unstructured environment - so called zones.
Parking lots or obstacle fields are modeled as zones. Because
there are no lanes in zones which the path finding component
could leverage there is a special path finding component
responsible in zones. This component searches a traversable
path in the configuration space with the help of an A*
algorithm. It is also responsible for constantly checking
the traversability of this path and making adaptions. Used
heuristics, algorithms for the target domain are described in
[8].

The state machine only controls the path finding compo-
nent and monitors its progress. It can therefore be modeled
on a very high level. Fig. 9 depicts the UML state chart of
the Zone state.

Zone

ZoneRecover

[need_to_park]

[no_need_to_park]

[need_to_park]

parking_spot_reached

[no_need_to_park]

ZoneDriveToExit ZoneParked

ZoneParking
zone_enteredzone_reached

ZoneEnteringZoneApproach

Fig. 9. UML diagram of state Zone

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2008 IEEE Intelligent Vehicles Symposium.
Received January 14, 2008.

When a zone is next in AnnieWAY’s mission the state
Zone gets activated. ZoneApproach is its inital state. Here
the special path planning component gets initialized while
AnnieWAY is slowed down so that it enteres the zone at a
reasonable slow speed. If the zone is reached, ZoneEntering
is activated. This state stops AnnieWAY and gives the special
path finding component the coordinates and direction of the
next checkpoint in the mission. This can be a parking spot -
where the next state is ZoneParking, or the exit of the zone
- where the next state is ZoneDriveToExit. These two states
monitor the progress of the special path planning component
and initiate a state transit if the checkpoint is reached. If the
state machine was in ZoneDriveToExit, it exits the Zone state
and returns to Drive. In the other case the state tranistion
goes to ZoneParked, where AnnieWAY parks for 5 seconds.
After parking the state transition are the same as in state
ZoneEntering.

During driving in a zone the normal safety and recove-
ry mechanisms are not active. The special path planning
component takes care of safety and recovery itself. Despite
this, the state machine monitors the progress and can skip
a checkpoint if the special path planning component fails to
recover and gets stuck. Therefore ZoneRecover is activated.

V. RESULTS

One of the primary requirements to reach the finals of
DARPA Urban Challenge was to show that the car drives
safely. This means not only to follow the traffic rules but
also to drive predictable and appropriate in every situation.
For this reason only 11 of originally 89 Teams entered the
final which one of them was team AnnieWAY .

In the semi-final which only 36 teams reached these
qualities were tested. There, Team AnnieWAY was able to
accomplish the safe conduction of a variety of maneuvers
with the presented approach including

• regular driving on lanes
• turning at intersections with oncoming traffic
• lane changing maneuvers
• vehicle following and passing
• following order of precedence at 4-way stops
• merging into moving traffic

AnnieWAY entered the final drove collision-free for several
minutes up to a point where it stopped due to a software
exception in one of the modules.

Figure V depicts three examples of the vehicles actual
course taken from a log-file and superimposed on an aerial
image. The rightmost figure shows the stopping position in
the final. The competition was won by CMU, followed by
the teams of Stanford and Virginia Tech.

VI. CONCLUSIONS AND FUTURE WORKS

We presented the design of the planner component of
the autonomous vehicle of Team AnnieWAY. The process
of behavior decision is solved with a hierarchical finite
state machine that enables the vehicle to behave properly
in various situations. With this architecture AnnieWAY was
able to reach the finals of the DARPA Urban Challenge 2007.

The main goal for the future is to improve the current
state machine design to enable the handling of more complex
situations and to possibly see at which point it gets untracta-
ble. It is also planned to investigate different approaches for
behavior decision and compare them to the current approach.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contribution of the
German collaborative research center ”SFB/TR 28 – Cogni-
tive Cars” granted by Deutsche Forschungsgemeinschaft.

REFERENCES

[1] C. Thorpe et al., Vision and Navigation: The Carnegie Mellon Navlab.
Annual Reviews, 1990.

[2] H. Nagel, W. Enkelmann, and G. Struck, “FhG-Co-Driver: From Map-
Guided Automatic Driving by Machine Vision to a Cooperative Driver
Support,” Mathematical and Computer Modelling, vol. 22, no. 4, pp.
185–212, 1995.

[3] U. Franke, D. Gavrila, A. Gern, S. Görzig, R. Janssen, F. Paetzold,
and C. Wöhler, “From Door to Door: Principles and Applications
of Computer Vision for Driver Assistant Systems,” Intelligent Vehicle
Technologies, pp. 131–188, 2001.

[4] E. Dickmanns, R. Behringer, D. Dickmanns, T. Hildebrandt, M. Maurer,
F. Thomanek, and J. Schiehlen, “The seeing passenger car’VaMoRs-
P’,” Intelligent Vehicles’ 94 Symposium, Proceedings of the, pp. 68–73,
1994.

[5] M. Bertozzi, A. Broggi, and A. Fascioli, “Vision-based intelligent
vehicles: State of the art and perspectives,” Robotics and Autonomous
Systems, vol. 32, no. 1, pp. 1–16, 2000.

[6] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” Systems Science and Cyberne-
tics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, July 1968.

[7] “The boost statechart library.” [Online]. Available:
http://www.boost.org/libs/statechart/doc/index.html

[8] J. Ziegler, M. Werling, , and J. Schröder, “Navigating car-like robots
in unstructured environments using an obstacle sensitive cost function,”
2008, to be accepted for IV08.

[9] M. Werling, T. Gindele, D. Jagszent, and L. Gröll, “A robust algorithm
for handling moving traffic in urban scenarios,” 2008, to be accepted
for IV08.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2008 IEEE Intelligent Vehicles Symposium.
Received January 14, 2008.

